Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[μ_2 -trans-1,2-di-4-pyridylethylene]hexa- μ_2 -oxido-nickel(II)divanadate(V)]

Chong-Chen Wang

School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, 100044 Beijing, People's Republic of China Correspondence e-mail: chongchenwang@126.com

Received 2 June 2007; accepted 13 July 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (V–O) = 0.002 Å; disorder in main residue; R factor = 0.032; wR factor = 0.083; data-to-parameter ratio = 19.0.

The structure of the title compound, $[NiV_2O_6(C_{12}H_{10}N_2)]_n$, is composed of corner-sharing $[V_2O_6]^{2-}$ chains along the *c* axis, with the $[Ni(bpe)]^{2+}$ (bpe = *trans*-1,2-di-4-pyridylethylene) units covalently attached to every V site through O atoms. The Ni atom is octahedrally coordinated by two pyridyl N atoms from two different bpe ligands, and four O atoms from four different VO₄ tetrahedra. All the C and H atoms are disordered over two positions each; the site occupancy factors are *ca* 0.55 and 0.45.

Related literature

For related literature, see: DeBord *et al.* (1996); Khan (2000); Khan *et al.* (2006); Khan, Yohannes & Doedens (1999); Khan, Yohannes & Powell (1999); Li *et al.* (2003); Yang *et al.* (2001); Zhang *et al.* (1996, 1997, 2007).

Experimental

Crystal data [NiV₂O₆(C₁₂H₁₀N₂)] $M_r = 438.81$

Orthorhombic, *Pbcn* a = 14.862 (3) Å b = 7.6402 (15) Å c = 26.947 (5) Å $V = 3059.8 (11) \text{ Å}^3$ Z = 8

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.607, T_{max} = 0.789$

Refinement $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.083$ S = 1.03 3500 reflections 184 parameters Mo K α radiation $\mu = 2.44 \text{ mm}^{-1}$ T = 293 (2) K $0.23 \times 0.19 \times 0.10 \text{ mm}$

27995 measured reflections 3500 independent reflections 3062 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.044$

33 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.80 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.71 \text{ e } \text{\AA}^{-3}$

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors gratefully acknowledge financial support from the Beijing Academic Innovation Group in Sustainable Water/ Waste Recycling Technologies (BJE10016200611) and the Research Fund of Beijing University of Civil Engineering and Architecture.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN3050).

References

- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- DeBord, J. R. D., Zhang, Y., Haushalter, R. C., Zubieta, J. & O'Connor, C. J. (1996). J. Solid State Chem. 122, 251–258.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Khan, M. I. (2000). J. Solid State Chem. 152, 105–112.
- Khan, M. I., Deb, S. & Doedens, R. J. (2006). Inorg. Chem. Commun. 9, 25–28.
- Khan, M. I., Yohannes, E. & Doedens, R. J. (1999). Angew. Chem. Int. Ed. 38, 1292–1294.
- Khan, M. I., Yohannes, E. & Powell, D. (1999). Inorg. Chem. 38, 212–213.
- Li, Z. H., Yin, C., Wang, R. J., Wang, P. & Guo, H. Y. (2003). Acta Phys. Chim. Sin. 19, 1133–1137.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yang, L., Hu, C., Naruke, H. & Yamase, T. (2001). Acta Cryst. C57, 799–801.Zhang, L. J., Hu, Z. J., Zhang, Z. & Guo, H. Y. (2007). Chin. J. Chem. 25, 566–569
- Zhang, Y., DeBord, J. R. D., O'Connor, C. J., Haushalter, R. C., Clearfield, A. & Zubieta, J. (1996). Angew. Chem. Int. Ed. Engl. 35, 989–991.
- Zhang, Y., Zapf, P. J., Meyer, L. M., Haushalter, R. C. & Zubieta, J. (1997). Inorg. Chem. 36, 2159-2165.

Acta Cryst. (2007). E63, m2233 [doi:10.1107/S1600536807034277]

$Poly[[\mu_2-trans-1,2-di-4-pyridylethylene]hexa-\mu_2-oxido-nickel(II)divanadate(V)]$

C.-C. Wang

Comment

Early transition metal oxide anion clusters (or POMs) are a rapidly growing class of compound. They have been of great interest because of their so-called 'Value-adding properties' and potential applications in such areas as catalysis, gas storage and chemical sensing (Khan, 2000; Khan, Yohannes & Doedens, 1999; Khan, Yohannes & Powell, 1999). Hydrothermal synthesis and structural characterization of vanadium oxide compounds containing Zn, Cu and Co -bipyridyl(or bipyridyl-like) complexes have been intensively studied because of their large structural diversity; for example, discrete zero-dimensional {Zn(2,2'-bipy)_2}_2V_4O_{12} (Zhang *et al.*, 1997); one dimensional [Cu(2,2'-bipy)V_2O_6] and [Cu(2,2'-bipy)_2V_2O_6] (De-Bord *et al.*, 1996); two-dimensional [Zn(2,2'-bipy)_2V_6O_{17}] (Zhang *et al.*, 1996); and three-dimensional Co(bpy)V_2O_6 (Li *et al.*, 2003), [Ni₂(4,4'-bipy)₃(H₂O)_2V_4O_{12}]. 2.5H₂O (Yang *et al.*, 2001), [{Co₂(4,4'-tmdp)₄}V₄O₁₂] (Khan *et al.*, 2006) and [Ni(bpp)₂]₂(V₄O₁₂) (Zhang *et al.*, 2007). The present work reports a new three-dimensional compound, Ni(bpe)V₂O₆, which is built from zigzag vanadium oxide chains [V₂O₆]²⁻, and complex nickel (II) cations, [Ni(bpe)]²⁺, as shown in Fig. 1. The N1 atom is coordinated to Ni1, while the N2 atom in the same bpe ligand is coordinated to Ni1^{vi} [Symmetry codes: (vi) *x*, *y* + 1, *z*] in the next layer. Thus, the [Ni(bpe)]_n²ⁿ⁺ chains are interpenetrated with each other. It is interesting that the bpe ligands assume two conformation modes, resulting in coexisting of the two conformations in the title compound, 50% probability respectively.

The crystal structure of the title compound can also be described as the neutral two-dimensional [NiV₂O₆] layers (Fig. 1) linked by neutral briding bpe ligand *via* Ni—O bonds to form 3-D framework. The Ni(II) center is octahedrally coordinated by two pyridyl N atoms from two different bpe ligands, and four O atoms from four VO₄ units, as depicted in Fig. 1, in which the N1, O5, O5ⁱ and N2ⁱⁱ form the equatorial plane, while the axial position are occupied by O1 and O4ⁱ. The Ni-centered coordination octahedron is slightly distorted, with the bond lengths, 2.0562 (19)- 2.0799 (17) Å for Ni—O bonds, 2.069 (2) Å and 2.081 (2) Å for Ni—N bonds, and the bond angles approximate to 90 ° or 180 °.

In the $[V_2O_6]$ units, O2 and O3 bridge two adjacent vanadium atoms; O1 and O4 are coordinated to two nickel atoms respectively; O6 acts as terminal oxygen, while O5 is coordinated to two adjacent Ni atoms. The distance between the adjacent Ni atoms is short, 2.9862 (8) Å, so an eight-membered ring of Ni1—O1—V2—O4—Ni1ⁱ—O1ⁱ—V2ⁱ—O4ⁱ is built to form equatorial plane, while the O5 and O5ⁱ occupy the axial position.

Experimental

A mixture of NiCl₂·6H₂O (0.239 g, 1 mmol), *trans*-1,2-bis(4-pyridyl)ethylene (0.182 g, 1 mmol), NH₄VO₃ (0.117 g, 1 mmol), and H₂O (15 g, 833 mmol) was heated at 140 °C for 120 h. After cooling to room temperature, large green block-like crystals of Ni(bpe)(V₂O₆) were filtered and collected in 86% yield based on Co.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent carbon atoms, with C—H distances of 0.93 Å and common isotropic displacement parameters (U_{iso} Å²).

All the C atoms within the (4-pyridyl)ethylene ligand are disordered over two positions with occupancy ratio of 0.55/ 0.45. This disorder was treated using a constrained refinement using PART and SAME commands available in *SHELXL97* (Sheldrick, 1997). In the last stage of refinement, the C atomss of the disordered moieties were constrained to have the same anisotropic displacement parameters using the EADP instructions.

Figures

. .

Fig. 1. A partial packing view showing the octahedral envoironnment of the nickel atoms. Ellipsoids are drawn at the 50% probability level. H atom have been omitted for clarity and only one component of the disordered ligand is shown for clarity. [Symmetry code: (i) -x + 2, -y, -z + 1; (ii) x - 1/2, y - 1/2, -z + 1/2; (iii) -x + 3/2, -y + 1/2, z - 1/2)

$Poly[[\mu_2-trans-1,2-di-4-pyridylethylene]hexa-\mu_2- oxidonickel(II)divanadate(V)]$

Crystal data	
[NiV ₂ O ₆ (C ₁₂ H ₁₀ N ₂)]	$F_{000} = 1744$
$M_r = 438.81$	$D_{\rm x} = 1.905 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbcn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2n 2ab	Cell parameters from 21006 reflections
a = 14.862 (3) Å	$\theta = 3.0-27.5^{\circ}$
<i>b</i> = 7.6402 (15) Å	$\mu = 2.44 \text{ mm}^{-1}$
c = 26.947 (5) Å	T = 293 (2) K
$V = 3059.8 (11) \text{ Å}^3$	Block, green
<i>Z</i> = 8	$0.23\times0.19\times0.10~mm$
Data collection	
Rigaku R-AXIS RAPID IP area-detector diffractometer	3500 independent reflections

Radiation source: rotating anode	3062 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.044$
T = 293(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
oscillation scans	$\theta_{\min} = 3.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -19 \rightarrow 18$
$T_{\min} = 0.607, \ T_{\max} = 0.789$	$k = -9 \rightarrow 9$

$l = -34 \rightarrow 33$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.083$	$w = 1/[\sigma^2(F_o^2) + (0.039P)^2 + 5.844P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.002$
3500 reflections	$\Delta \rho_{max} = 0.80 \text{ e } \text{\AA}^{-3}$
184 parameters	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$
33 restraints	Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ni1	1.000877 (19)	0.03138 (4)	0.445312 (11)	0.01140 (9)	
01	1.08060 (12)	-0.1892 (2)	0.44057 (6)	0.0187 (4)	
O2	1.24362 (13)	-0.2685 (3)	0.48670 (8)	0.0310 (5)	
O3	1.10701 (13)	-0.5327 (2)	0.47517 (7)	0.0230 (4)	
O4	1.08061 (12)	-0.2425 (2)	0.53989 (6)	0.0194 (4)	
O5	1.07726 (11)	0.1096 (2)	0.50603 (6)	0.0138 (3)	
O6	1.15705 (16)	0.3446 (3)	0.56686 (8)	0.0360 (5)	
V1	1.14782 (3)	0.28571 (5)	0.510151 (15)	0.01393 (11)	
V2	1.12514 (3)	-0.30379 (5)	0.486666 (15)	0.01319 (11)	
N1	1.08372 (17)	0.1648 (4)	0.39593 (8)	0.0304 (6)	
C1	1.0407 (4)	0.2985 (8)	0.3690 (2)	0.0322 (4)	0.55
H1	0.9873	0.3472	0.3806	0.039*	0.55
C2	1.0790 (5)	0.3575 (8)	0.32457 (19)	0.0322 (4)	0.55
H2	1.0485	0.4386	0.3051	0.039*	0.55
C3	1.1633 (5)	0.2942 (8)	0.3095 (2)	0.0322 (4)	0.55
C4	1.2067 (4)	0.1802 (8)	0.3419 (2)	0.0322 (4)	0.55

H4	1.2648	0.1426	0.3349	0.039*	0.55
C5	1.1639 (5)	0.1224 (10)	0.3842 (2)	0.0322 (4)	0.55
Н5	1.1954	0.0484	0.4054	0.039*	0.55
C6	1.2037 (4)	0.3516 (8)	0.2623 (2)	0.0322 (4)	0.55
H6	1.1675	0.4143	0.2405	0.039*	0.55
C7	1.2868 (4)	0.3206 (8)	0.2489 (2)	0.0322 (4)	0.55
H7	1.3222	0.2615	0.2718	0.039*	0.55
C8	1.3312 (4)	0.3678 (9)	0.2018 (2)	0.0322 (4)	0.55
С9	1.4152 (4)	0.3013 (8)	0.1912 (2)	0.0322 (4)	0.55
H9	1.4426	0.2244	0.2133	0.039*	0.55
C10	1.4589 (5)	0.3481 (9)	0.1482 (2)	0.0322 (4)	0.55
H10	1.5153	0.3004	0.1416	0.039*	0.55
N2	1.42232 (15)	0.4621 (3)	0.11494 (8)	0.0228 (5)	
C11	1.3373 (5)	0.5090 (15)	0.1216 (3)	0.0322 (4)	0.55
H11	1.3080	0.5702	0.0965	0.039*	0.55
C12	1.2906 (4)	0.4698 (9)	0.1648 (2)	0.0322 (4)	0.55
H12	1.2323	0.5112	0.1692	0.039*	0.55
C1A	1.0590 (6)	0.2575 (13)	0.3583 (3)	0.0416 (7)	0.45
H1A	0.9990	0.2917	0.3564	0.050*	0.45
C2A	1.1169 (6)	0.3095 (13)	0.3203 (3)	0.0416 (7)	0.45
H2A	1.0962	0.3824	0.2951	0.050*	0.45
C3A	1.2059 (6)	0.2521 (13)	0.3201 (3)	0.0416 (7)	0.45
C4A	1.2356 (5)	0.1556 (12)	0.3599 (3)	0.0416 (7)	0.45
H4A	1.2962	0.1278	0.3635	0.050*	0.45
C5A	1.1726 (6)	0.1008 (16)	0.3948 (3)	0.0416 (7)	0.45
H5A	1.1899	0.0184	0.4183	0.050*	0.45
C6A	1.2666 (5)	0.3011 (11)	0.2792 (2)	0.0416 (7)	0.45
H6A	1.3279	0.2905	0.2855	0.050*	0.45
C7A	1.2445 (6)	0.3571 (12)	0.2358 (2)	0.0416 (7)	0.45
H7A	1.1834	0.3723	0.2297	0.050*	0.45
C8A	1.3068 (5)	0.3995 (14)	0.1947 (3)	0.0416 (7)	0.45
C9A	1.3985 (5)	0.3595 (13)	0.1970 (3)	0.0416 (7)	0.45
H9A	1.4230	0.3118	0.2257	0.050*	0.45
C10A	1.4533 (6)	0.3920 (13)	0.1556 (3)	0.0416 (7)	0.45
H10A	1.5139	0.3624	0.1573	0.050*	0.45
C11A	1.3369 (7)	0.514 (2)	0.1146 (4)	0.0416 (7)	0.45
H11A	1.3176	0.5816	0.0879	0.050*	0.45
C12A	1.2752 (6)	0.4754 (14)	0.1509 (3)	0.0416 (7)	0.45
H12A	1.2143	0.4989	0.1465	0.050*	0.45

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Ni1	0.01027 (15)	0.01366 (17)	0.01028 (16)	-0.00039 (11)	0.00018 (10)	0.00108 (11)
01	0.0176 (9)	0.0193 (10)	0.0193 (8)	0.0044 (7)	0.0003 (7)	-0.0010(7)
O2	0.0108 (9)	0.0283 (11)	0.0540 (13)	-0.0018 (8)	-0.0035 (9)	0.0026 (10)
O3	0.0249 (10)	0.0123 (9)	0.0317 (10)	-0.0005 (7)	-0.0049 (8)	-0.0013 (7)
O4	0.0206 (9)	0.0167 (9)	0.0210 (9)	0.0048 (7)	-0.0020 (7)	0.0011 (7)

05	0.0104 (8)	0.0149 (9)	0.0162 (8)	-0.0033 (7)	-0.0002 (6)	0.0000 (6)
O6	0.0485 (14)	0.0337 (13)	0.0260 (10)	-0.0179 (11)	-0.0051 (10)	-0.0060 (9)
V1	0.0098 (2)	0.0119 (2)	0.0201 (2)	-0.00288 (15)	-0.00073 (15)	-0.00112 (15)
V2	0.00889 (19)	0.0101 (2)	0.0206 (2)	0.00108 (14)	-0.00144 (15)	-0.00086 (15)
N1	0.0322 (14)	0.0399 (15)	0.0189 (11)	-0.0144 (12)	0.0053 (10)	0.0043 (10)
C1	0.0380 (10)	0.0327 (10)	0.0257 (9)	0.0049 (8)	0.0186 (8)	0.0072 (7)
C2	0.0380 (10)	0.0327 (10)	0.0257 (9)	0.0049 (8)	0.0186 (8)	0.0072 (7)
C3	0.0380 (10)	0.0327 (10)	0.0257 (9)	0.0049 (8)	0.0186 (8)	0.0072 (7)
C4	0.0380 (10)	0.0327 (10)	0.0257 (9)	0.0049 (8)	0.0186 (8)	0.0072 (7)
C5	0.0380 (10)	0.0327 (10)	0.0257 (9)	0.0049 (8)	0.0186 (8)	0.0072 (7)
C6	0.0380 (10)	0.0327 (10)	0.0257 (9)	0.0049 (8)	0.0186 (8)	0.0072 (7)
C7	0.0380 (10)	0.0327 (10)	0.0257 (9)	0.0049 (8)	0.0186 (8)	0.0072 (7)
C8	0.0380 (10)	0.0327 (10)	0.0257 (9)	0.0049 (8)	0.0186 (8)	0.0072 (7)
C9	0.0380 (10)	0.0327 (10)	0.0257 (9)	0.0049 (8)	0.0186 (8)	0.0072 (7)
C10	0.0380 (10)	0.0327 (10)	0.0257 (9)	0.0049 (8)	0.0186 (8)	0.0072 (7)
N2	0.0208 (11)	0.0324 (14)	0.0152 (10)	-0.0036 (10)	0.0025 (9)	0.0019 (9)
C11	0.0380 (10)	0.0327 (10)	0.0257 (9)	0.0049 (8)	0.0186 (8)	0.0072 (7)
C12	0.0380 (10)	0.0327 (10)	0.0257 (9)	0.0049 (8)	0.0186 (8)	0.0072 (7)
C1A	0.0366 (13)	0.0581 (18)	0.0303 (12)	-0.0040 (12)	0.0104 (10)	0.0100 (12)
C2A	0.0366 (13)	0.0581 (18)	0.0303 (12)	-0.0040 (12)	0.0104 (10)	0.0100 (12)
C3A	0.0366 (13)	0.0581 (18)	0.0303 (12)	-0.0040 (12)	0.0104 (10)	0.0100 (12)
C4A	0.0366 (13)	0.0581 (18)	0.0303 (12)	-0.0040 (12)	0.0104 (10)	0.0100 (12)
C5A	0.0366 (13)	0.0581 (18)	0.0303 (12)	-0.0040 (12)	0.0104 (10)	0.0100 (12)
C6A	0.0366 (13)	0.0581 (18)	0.0303 (12)	-0.0040 (12)	0.0104 (10)	0.0100 (12)
C7A	0.0366 (13)	0.0581 (18)	0.0303 (12)	-0.0040 (12)	0.0104 (10)	0.0100 (12)
C8A	0.0366 (13)	0.0581 (18)	0.0303 (12)	-0.0040 (12)	0.0104 (10)	0.0100 (12)
C9A	0.0366 (13)	0.0581 (18)	0.0303 (12)	-0.0040 (12)	0.0104 (10)	0.0100 (12)
C10A	0.0366 (13)	0.0581 (18)	0.0303 (12)	-0.0040 (12)	0.0104 (10)	0.0100 (12)
C11A	0.0366 (13)	0.0581 (18)	0.0303 (12)	-0.0040 (12)	0.0104 (10)	0.0100 (12)
C12A	0.0366 (13)	0.0581 (18)	0.0303 (12)	-0.0040 (12)	0.0104 (10)	0.0100 (12)

Geometric parameters (Å, °)

Ni1—O4 ⁱ	2.0558 (19)	С7—Н7	0.9300
Ni1—O5 ⁱ	2.0561 (17)	C8—C9	1.378 (8)
Ni1—O1	2.0641 (19)	C8—C12	1.402 (8)
Ni1—N2 ⁱⁱ	2.069 (2)	C9—C10	1.377 (7)
Ni1—O5	2.0790 (16)	С9—Н9	0.9300
Ni1—N1	2.080 (2)	C10—N2	1.362 (7)
Ni1—Ni1 ⁱ	2.9862 (8)	C10—H10	0.9300
O1—V2	1.6575 (18)	N2—C10A	1.304 (9)
O2—V2	1.781 (2)	N2—C11	1.326 (7)
O2—V1 ⁱⁱⁱ	1.782 (2)	N2—C11A	1.331 (10)
O3—V1 ^{iv}	1.783 (2)	N2—Ni1 ^{vii}	2.069 (2)
O3—V2	1.7966 (19)	C11—C12	1.388 (7)
O4—V2	1.6476 (18)	C11—H11	0.9300
O4—Ni1 ⁱ	2.0558 (19)	C12—H12	0.9300
O5—V1	1.7098 (17)	C1A—C2A	1.397 (9)

O5—Ni1 ⁱ	2.0561 (17)	C1A—H1A	0.9300
O6—V1	1.599 (2)	C2A—C3A	1.393 (11)
V1—O2 ^v	1.782 (2)	C2A—H2A	0.9300
V1—O3 ^{vi}	1.783 (2)	C3A—C4A	1.376 (10)
N1—C5	1.275 (7)	C3A—C6A	1.472 (9)
N1—C1A	1.290 (8)	C4A—C5A	1.391 (9)
N1—C1	1.407 (6)	C4A—H4A	0.9300
N1—C5A	1.409 (9)	C5A—H5A	0.9300
C1—C2	1.401 (7)	C6A—C7A	1.288 (9)
C1—H1	0.9300	С6А—Н6А	0.9300
C2—C3	1.403 (8)	C7A—C8A	1.480 (9)
С2—Н2	0.9300	С7А—Н7А	0.9300
C3—C4	1.391 (8)	C8A—C12A	1.395 (9)
C3—C6	1.472 (6)	C8A—C9A	1.398 (10)
C4—C5	1.379 (7)	C9A—C10A	1.402 (9)
С4—Н4	0.9300	С9А—Н9А	0.9300
С5—Н5	0.9300	C10A—H10A	0.9300
C6—C7	1.309 (7)	C11A—C12A	1.374 (9)
С6—Н6	0.9300	CllA—HllA	0.9300
C/C8	1.4/4 (6)	C12A—H12A	0.9300
O4 ⁱ —Ni1—O5 ⁱ	87.39 (7)	С7—С6—Н6	117.6
O4 ⁱ —Ni1—O1	172.16 (7)	С3—С6—Н6	117.6
O5 ⁱ —Ni1—O1	86.33 (7)	C6—C7—C8	128.1 (6)
O4 ⁱ —Ni1—N2 ⁱⁱ	91.18 (9)	С6—С7—Н7	115.9
O5 ⁱ —Ni1—N2 ⁱⁱ	92.73 (8)	С8—С7—Н7	115.9
O1—Ni1—N2 ⁱⁱ	93.80 (9)	C9—C8—C12	116.6 (5)
O4 ⁱ —Ni1—O5	86.77 (7)	C9—C8—C7	119.6 (5)
O5 ⁱ —Ni1—O5	87.53 (7)	C12—C8—C7	123.7 (5)
O1—Ni1—O5	88.27 (7)	C10—C9—C8	120.4 (6)
N2 ⁱⁱ —Ni1—O5	177.92 (9)	С10—С9—Н9	119.8
O4 ⁱ —Ni1—N1	95.08 (10)	С8—С9—Н9	119.8
O5 ⁱ —Ni1—N1	177.51 (10)	N2C10C9	122.1 (5)
O1—Ni1—N1	91.19 (10)	N2-C10-H10	118.9
N2 ⁱⁱ —Ni1—N1	87.56 (10)	C9—C10—H10	118.9
O5—Ni1—N1	92.27 (8)	C10A—N2—C11	109.5 (5)
O4 ⁱ —Ni1—Ni1 ⁱ	85.95 (5)	C10A—N2—C11A	117.8 (5)
O5 ⁱ —Ni1—Ni1 ⁱ	44.07 (5)	C11—N2—C11A	8.4 (6)
O1—Ni1—Ni1 ⁱ	86.27 (5)	C10A—N2—C10	17.0 (5)
N2 ⁱⁱ —Ni1—Ni1 ⁱ	136.77 (7)	C11—N2—C10	117.7 (4)
O5—Ni1—Ni1 ⁱ	43.46 (5)	C11A—N2—C10	125.3 (5)
N1—Ni1—Ni1 ⁱ	135.68 (7)	C10A—N2—Ni1 ^{vii}	124.5 (4)
V2—01—Ni1	127.89 (10)	C11—N2—Ni1 ^{vii}	125.1 (3)
V2—O2—V1 ⁱⁱⁱ	158.52 (14)	C11A—N2—Ni1 ^{vii}	117.1 (4)
V1 ^{iv} —O3—V2	127.96 (11)	C10—N2—Ni1 ^{vii}	117.0 (3)

V2—O4—Ni1 ⁱ	128.95 (10)	N2-C11-C12	122.1 (6)
V1—O5—Ni1 ⁱ	135.83 (9)	N2—C11—H11	118.9
V1	127.75 (9)	C12—C11—H11	118.9
Ni1 ⁱ —O5—Ni1	92.47 (7)	C11—C12—C8	120.1 (6)
O6—V1—O5	109.64 (10)	С11—С12—Н12	120.0
$O6-V1-O2^{v}$	109.07 (12)	C8—C12—H12	120.0
O5—V1—O2 ^v	110.44 (9)	N1—C1A—C2A	123.8 (7)
06—V1—O3 ^{vi}	108.39 (11)	N1—C1A—H1A	118.1
05—V1—O3 ^{vi}	111.67 (9)	C2A—C1A—H1A	118.1
O2 ^v —V1—O3 ^{vi}	107.54 (10)	C3A—C2A—C1A	119.9 (7)
04—V2—01	109.98 (9)	СЗА—С2А—Н2А	120.0
O4—V2—O2	110.70 (10)	C1A—C2A—H2A	120.0
O1—V2—O2	108.38 (10)	C4A—C3A—C2A	118.1 (6)
O4—V2—O3	111.52 (10)	C4A—C3A—C6A	121.5 (8)
O1—V2—O3	108.97 (9)	C2A—C3A—C6A	120.3 (8)
O2—V2—O3	107.19 (10)	C3A—C4A—C5A	118.2 (7)
C5—N1—C1A	102.2 (5)	СЗА—С4А—Н4А	120.9
C5—N1—C1	118.8 (4)	С5А—С4А—Н4А	120.9
C1A—N1—C1	21.0 (4)	C4A—C5A—N1	122.8 (7)
C5—N1—C5A	14.0 (4)	С4А—С5А—Н5А	118.6
C1A—N1—C5A	116.1 (5)	N1—C5A—H5A	118.6
C1—N1—C5A	131.9 (5)	C7A—C6A—C3A	127.4 (8)
C5—N1—Ni1	126.0 (3)	С7А—С6А—Н6А	116.3
C1A—N1—Ni1	127.1 (4)	СЗА—С6А—Н6А	116.3
C1—N1—Ni1	114.6 (3)	C6A—C7A—C8A	126.4 (8)
C5A—N1—Ni1	113.5 (4)	С6А—С7А—Н7А	116.8
C2-C1-N1	119.3 (5)	С8А—С7А—Н7А	116.8
C2-C1-H1	120.3	C12A—C8A—C9A	117.2 (7)
N1—C1—H1	120.3	C12A—C8A—C7A	120.9 (7)
C1—C2—C3	120.0 (6)	C9A—C8A—C7A	121.9 (7)
С1—С2—Н2	120.0	C8A-C9A-C10A	119.5 (7)
С3—С2—Н2	120.0	С8А—С9А—Н9А	120.3
C4—C3—C2	116.7 (5)	С10А—С9А—Н9А	120.3
C4—C3—C6	122.6 (6)	N2—C10A—C9A	122.4 (8)
C2—C3—C6	120.7 (6)	N2	118.8
C5—C4—C3	120.4 (6)	C9A—C10A—H10A	118.8
C5—C4—H4	119.8	N2-C11A-C12A	124.5 (8)
C3—C4—H4	119.8	N2—C11A—H11A	117.8
N1C5C4	123.7 (5)	C12A—C11A—H11A	117.8
N1—C5—H5	118.2	C11A—C12A—C8A	117.9 (8)
C4—C5—H5	118.2	C11A—C12A—H12A	121.1
C7—C6—C3	124.8 (6)	C8A—C12A—H12A	121.1

Symmetry codes: (i) -*x*+2, -*y*, -*z*+1; (ii) *x*-1/2, *y*-1/2, -*z*+1/2; (iii) -*x*+5/2, *y*-1/2, *z*; (iv) *x*, *y*-1, *z*; (v) -*x*+5/2, *y*+1/2, *z*; (vi) *x*, *y*+1, *z*; (vii) *x*+1/2, *y*+1/2, -*z*+1/2.

